Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.369041

ABSTRACT

Motivation: In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Results: Here, we describe a workflow we designed for a semi-automated integration of rapidly emerging datasets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 74,805 host-host protein and 1,265 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is accessible via a web interface and via API calls based on the Bolt protocol. We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19. Availability: https://neo4covid19.ncats.io . Keywords: SARS-CoV-2, COVID-19, network pharmacology, graph database, Neo4j, data integration, drug repositioning


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.04.135046

ABSTRACT

The National Center for Advancing Translational Sciences (NCATS) has developed an online open science data portal for its COVID-19 drug repurposing campaign - named OpenData - with the goal of making data across a range of SARS-CoV-2 related assays available in real-time. The assays developed cover a wide spectrum of the SARS-CoV-2 life cycle, including both viral and human (host) targets. In total, over 10,000 compounds are being tested in full concentration-response ranges from across multiple annotated small molecule libraries, including approved drug, repurposing candidates and experimental therapeutics designed to modulate a wide range of cellular targets. The goal is to support research scientists, clinical investigators and public health officials through open data sharing and analysis tools to expedite the development of SARS-CoV-2 interventions, and to prioritize promising compounds and repurposed drugs for further development in treating COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL